TUGAS 1 FUZZY LOGIC

Pengertian Logika Fuzzy

Dalam bahasa inggris, fuzzy mempunyai arti kabur atau tidak jelas. Jadi, logika fuzzy adalah logika yang kabur, atau mengandung unsur ketidakpastian.

Pada logika biasa, yaitu logika tegas, kita hanya mengenal dua nilai, salah atau benar, 0 atau 1. Sedangkan logika fuzzy mengenal nilai antara benar dan salah. Kebenaran dalam logika fuzzy dapat dinyatakan dalam derajat kebenaran yang nilainya antara 0 sampai 1.

Misalnya dalam kehidupan sehari-hari, dewasa didefinisikan dengan berusia 17 tahun ke atas. Jika
menggunakan logika tegas, seseorang yang berusia 17 tahun kurang 1 hari akan didefinisikan sebagai tidak dewasa. Namun dalam logika fuzzy, orang tersebut dapat dinyatakan dengan hampir dewasa.



·         Himpunan Fuzzy

Himpunan fuzzy adalah pengelompokan sesuatu berdasarkan variabel bahasa (linguistik variable), yang dinyatakan dengan fungsi keanggotaan, dalam semesta U. Keanggotaan suatu nilai pada himpunan dinyatakan dengan derajat keanggotaan yang nilainya antara 0.0 sampai 1.0 .

Himpunan fuzzy didasarkan pada gagasan untuk memperluas jangkauan fungsi karakteristik sedemikian hingga fungsi tersebut akan mencakup bilangan real pada interval [0,1]. Nilai keanggotaannya menunjukkan bahwa suatu item tidak hanya bernilai benar atau salah. Nilai 0 menunjukkan salah, nilai 1 menunjukkan benar, dan masih ada nilai-nilai yang terletak antara benar dan salah.

1.      CONTOH PENERAPAN FUZZY LOGIC :

·      Penerapan Logika Fuzzy Pada Penilaian Mutu Teh Hitam Oorthodox

    Masalah yang dihadapi : Bagaimana menentukan mutu teh hitam tanpa menggunakan tester dan ketidakpastian batas antara satu kriteria dengan kriteria lainnya?
    Tujuan Penelitian : Membuat model penilaian mutu teh dengan menggunakan program komputer berbasis logika fuzzy.
    Manfaat Penelitian : Diharapkan dapat bermanfaat dalam menentukan mutu teh hitam yang baik.
    Pengguna Aplikasi dan Sistem pakarnya adalah Konsumen Teh Hitam dan Dra. ThongTjie
    Menentukan himpunan fuzzy


Contoh Penerapan Fuzzy Logic - Metode Mamdani menggunakan Matlab

 

Bagi anda yang mempelajari tentang Artificial Intelligence pada pokok bahasan Fuzzy Logic, ada tiga metode yang sering digunakan dalam menyelesaikan masalah dengan menggunakan konsep fuzzy logic, yaitu: (1) Metode Tsukamoto; (2) Metode Mamdani; (3) Metode Sugeno. Pada kesempatan ini, saya akan menerapkan metode Mamdani untuk menyelesaikan sebuah contoh masalah sederhana menggunakan aplikasi Matlab. Metode Mamdani adalah metode yang lebih mudah digunakan dari kedua pada metode lainnya. Sebagaimana kita ketahui bahwa Matlab menyediakan metode ini (Mamdani) pada toolbox fuzzy, namun saya akan mencobanya dengan koding.

Prosedur Fuzzy Logic:

1.      Fuzzifikasi;
2.      Pembentukan Rule
3.      Mesin Inferensi
4.      Defuzzifikasi

Contoh Kasus

Perhatikan komentar pada script berikut ini:
a = newfis('MAMDANI IDEAL BADAN');

%Tinggi Badan (Input 1)
a = addvar(a,'input','Tinggi Badan',[0 200]);
a = addmf(a,'input',1,'Pendek','trapmf',[0 0 100 140]);
a = addmf(a,'input',1,'Sedang','trimf',[125 150 175]);
a = addmf(a,'input',1,'Tinggi','trimf',[160 200 200]);

%Berat Badan (Input 2)
a = addvar(a,'input','Berat Badan',[0 100]);
a = addmf(a,'input',2,'Ringan','gaussmf',[15 0]);
a = addmf(a,'input',2,'Normal','gaussmf',[15 50]);
a = addmf(a,'input',2,'Berat','gaussmf',[15 100]);

%Ideal Badan (Output 1)
a = addvar(a,'output','Ideal Badan',[0 10]);
a = addmf(a,'output',1,'Sedikit','trimf',[0 1.5 3]);
a = addmf(a,'output',1,'Sedang','trimf',[3 5 7]);
a = addmf(a,'output',1,'Banyak','trimf',[7 8.5 10]);

% Rule #1 : IF TinggiBadan is Tinggi AND BeratBadan is Ringan THEN IdealBadan is Kurus
%      #2 : IF TinggiBadan is Tinggi AND BeratBadan is Normal THEN IdealBadan is Kurus
%      #3 : IF TinggiBadan is Sedang AND BeratBadan is Ringan THEN IdealBadan is Kurus
%      #4 : IF TinggiBadan is Pendek AND BeratBadan is Ringan THEN IdealBadan is Ideal
%      #5 : IF TinggiBadan is Sedang AND BeratBadan is Normal THEN IdealBadan is Ideal
%      #6 : IF TinggiBadan is Tinggi AND BeratBadan is Berat THEN IdealBadan is Ideal
%      #7 : IF TinggiBadan is Pendek AND BeratBadan is Berat THEN IdealBadan is Gemuk
     #8 : IF TinggiBadan is Pendek AND BeratBadan is Normal THEN IdealBadan is Gemuk
%      #9 : IF TinggiBadan is Sedang AND BeratBadan is Berat THEN IdealBadan is Gemuk

% masing-masing kolom adl input1|input2|output1|weight|OR=2; AND=1
ruleList=[...
    3 1 1 1 1
    3 2 1 1 1
    2 1 1 1 1
    1 1 2 1 1
    2 2 2 1 1
    3 3 2 1 1
    1 3 3 1 1
    1 2 3 1 1
    2 3 3 1 1];
a = addrule(a,ruleList);

out = evalfis([165 55],a); % 165 = Tinggi Badan; 55 = Berat Badan

writefis(a,'Mamdani_UseCoding_gaussmf'); % Simpan ke File dng nama "Mamdani_UserCoding.fis"

% fismat = readfis('BuildManualFuzzy'); %Membaca file --> getfis(fismat); %Membaca file

Untuk menjalankan file ini pada toolbox Fuzzy, silahkan ketik: fuzzy('namaFile'); pada Commmad Window Matlab lalu tampilkanlah outputnya dengan memilih menu View - Rules atau Surface pada tollbox fuzzy (Fis Editor).




SUMBER :
Jannus Maurits Nainggolan, “Logika Fuzzy (Fuzzy Logic) : Teori dan Penerapan Pada Sistem Daya (Kajian Pengaruh Induksi Medan Magnet)”
http://k12008.widyagama.ac.id/ai/diktatpdf/Logika_Fuzzy.p df






0 komentar:

Posting Komentar

Disney The Little Mermaid Ariel Glitter
 
SOFTSKILL Blog Design by Ipietoon